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Introduction: 
      RNA interference (RNAi) is a conserved biological process in response to double-stranded 

RNA (dsRNA) 1. DsRNAs are processed into short interfering RNAs (siRNAs), about 22 

nucleotides in length, by the RNase enzyme Dicer. The siRNAs are then incorporated into a 

silencing complex called RISC (RNA-induced silencing complex), which identifies and silences 

complementary messenger RNAs. The most well characterized source of endogenous triggers 

for the RNAi machinery are the microRNA genes2,3. Numerous studies have demonstrated that, 

in animals, miRNAs are transcribed to generate long primary polyadenylylated RNAs (pri-

miRNAs)4,5. Through mechanisms not yet fully understood, the pri-microRNA is recognized and 

cleaved at a specific site by the nuclear Microprocessor complex6-10 to produce a ~70-90 

nucleotide microRNA precursor (pre-miRNA) which is exported to the cytoplasm 11,12. Only then 

is the pre-miRNA recognized by Dicer and cleaved to produce a mature microRNA. This 

probably involves recognition of the 2 nucleotide 3’ overhang created by Drosha to focus Dicer 

cleavage at a single site ~22 nucleotides from the end of the hairpin13. 

This process can be programmed experimentally in order to repress the expression of any 

chosen gene. We have constructed shRNA libraries (shRNA-mir) that uses our advanced 

understanding of miRNA biogenesis. ShRNA-mirs are modeled after endogenous miRNAs, 

specifically contained in the backbone of the primary miR-30 microRNA14. We have produced 

and sequence-verified more than 200,000 shRNAs covering almost all of the predicted genes in 

the mouse and human genomes15.  

 Our shRNA library can function in both individual cell based assays and pooled screens. 

We have linked a unique 60-nuclotide DNA barcode to each shRNA vector to allow us to follow 

the fate of shRNAs in populations of virally transduced cells. If, for example, a particular shRNA 

provided resistance to a growth inhibitor stimulus, then the representation of its associated 

barcode should be increased after treatment. If a given shRNA sensitized a population to a 

specific stress, then the relative abundance of its barcode should diminish after the stress. This 

is measured by hybridizing genomic PCR products containing the barcodes to custom 

microarrays that contain the complement of these sequences. One can assess cellular 

response to different treatments by comparing barcode representations of cell populations 

expressing known shRNA. The development of this highly efficient RNAi library together with 

the ability to screen pools of genes, provide us with the unique opportunity to investigate the 

entire genome.   
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Velcade, the only proteasome targeted therapeutic approved by the FDA, is currently in 

Phase II clinical trials in breast cancer, though its molecular mechanism is highly disputed. I am 

examining the genes responsible for granting resistance and susceptibility to Velcade using our 

complex short hairpin RNAi library that results in the silencing of specific target genes. This 

technology will illustrate resistance to chemotherapy as a gain of barcode representation and 

increased susceptibility to chemotherapy as loss of barcode representation in a population of 

cells. 

 

Body:  

Screening methods 

 Recent breakthroughs in Velcade’s mechanism point to possible controls for our screen. 

Velcade induces Noxa, a specific BH3 only protein, in abundance in multiple cancer types. 

Velcade differentially upregulates Noxa in cancer cells in comparison to normal cell types and 

while Noxa is known to be a downstream effector of p53, suprisingly, Velcade’s induction occurs 

regardless of p53 status. Knockdown of Noxa through RNAi decreases response to Velcade in 

mantle cell lymphoma, melanoma and multiple myeloma. The Soengas lab showed that 

Velcade induces Noxa robustly in the MDA-MB231 breast cancer cell line, which I am using for 

my experiments. It has been postulated that different environmental triggers can activate cell 

death through distinct BH3 only proteins in different cell types, although the orchestrated activity 

of more than one BH3 only protein is possible. Recently, it has been published that the 

Noxa/MCL1 axis functions as a rheostat under conditions of glucose deprivation or in 

pathological circumstances when cells compete for nutrients.  

 I have confirmed Noxa induction by Velcade in MDAMB231 and H292 lung cancer cells 

and through Western blot analysis using Noxa antibodies. In addition, I have found 3 different 

hairpins from our library that each silence Noxa to different degrees. The degree of hairpin 

knockdown roughly correlates to the amount of Velcade resistance as measured by an MTT 

assay. I have completed a screen in MDAMB231 cells using a focused collection of library 

hairpins (7400 hps). The screen was conducted in triplicate utilizing 3x15cm plates per 

biological replicate. MDA MB231 cells were retrovirally infected with our shRNA library focusing 

on human kinases, phosphatases, and a set of 1000 genes that been linked to cancer 

progression, the Harvard Cancer 1000. Kinases and phosphatases are attractive drug targets 

as their dysfunction can result in a variety of diseases including cancer. In recent years, several 
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protein kinase inhibitors have performed successfully in clinical studies. They now account for 

20–30% of the drug discovery programs of many companies.  

After infection, cells with hairpin were selected for using a puromycin resistance marker. 

These hairpin infected cells were separated into three groups. Two groups received specific 

drug treatment and the third group was treated with DMSO as a control. Hairpin infected cells 

were treated at an ineffectual dose 5nM (IC20) where 80% of the cells survive or at a high dose 

10nM (IC50). The low dose exposes genes that will increase the tumor’s sensitivity to the drug 

by causing an increase in cell death. Genes that synergize with a suboptimal drug treatment will 

allow us to make the drug more potent at a lower dose. In addition, since the 

chemotherapy could potentially be used at lower levels, some of its toxic side effects could be 

relieved. The high dose of 10nM will expose genes that are resistant to Velcade treatment. Time 

points were taken where genomic DNA was extracted from a portion of the cells every time the 

cells reach confluency which was approximately every four to five days. A total of two timepoints 

(not including T0) were taken after puromycin selection.  

Microarray Analysis 

Changes in cell growth are monitored through our cutting-edge DNA barcoding technology. 

Each hairpin is linked to a unique 60 nucleotide sequence, which serves as a barcode, and 

allows us to virtually count the number of cells that contain a specific hairpin in a cell population. 

Small changes in barcode copy number can be monitored through the use of microarray 

technology. Our hybridization quality has improved considerably due to previous experiments 

that resulted in changing our probe size, labeling methods, probe amounts and hybridization 

conditions. We now amplify a 350mer segment of genomic DNA including the barcode and 

hairpin allowing us to use both the barcode and the sense hairpin as probes.  In addition, by 

collaborating with bioinformaticist, Joel Parker, we have been able to identify major sources of 

variability for our hybridizations including DNA preparation, PCR and a “day effect” caused by 

day of hybridization. Joel’s analysis has helped us refine our microarray hybridizations. 

 In addition, we are also developing a method for analyzing our results based on a 

method called SAFE from the Wright lab at UNC. SAFE allows to increase our ability to identify 

target genes that have been enriched or depleted. Hairpins that show a modest downward shift 

in p values might not be noticeable when examining a large group of target genes. A single 

hairpin may not be statistically significant, unless it is taken together with independent estimates 

(different hairpins) of the same target. To account for this, first a local statistic (simple T test) is 

taken and then the p values are applied to a larger global statistic (SAFE method) with the goal 
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of detecting a shift in the local statistic within a gene target to more extreme values. The 

significance of the global statistics is assessed by repeatedly permuting the values and 

recomputing the statistic.  

My next step is to hybridize the screen using our Agilent eight-plex microarray platform. 

After hybridization, Loess Normalization will be performed on all the chips to account for 

intensity dependent differences and principal component analysis will be used to account for 

variability due to day of hybridization. I will then use the SAFE method and the SAM program to 

look for genes of statistical significance. Priority will be given to genes that are consistently 

enriched/depleted over all time points and over both doses. Kinases with known drug inhibitors 

are given priority as these results could be expanded on in chemotherapy combination trials in 

the clinic. I am also focusing on candidate genes that illuminate known pathways as this may 

indicate a gene network that is involved in increasing vulnerability to chemotherapy. In addition, 

since our library has multiple hairpins per gene, several hairpins that score for the same gene 

are a good indication of a true positive. I will then validate these targets by on an individual hp 

basis and characterize biological function of genes that modify sensitivity. Our mouse mammary 

fat pad model presents the best combination of convenience and biological relevance for testing 

our validated in vitro interactions for their effects in vivo.  

Key Research Accomplishments: 

• A RNAi screen in MDAMB231 breast cancer cells identifying genes that modify sensitivity to 

the proteasome inhibitor, Velcade. 

• Optimization of microarray conditions using Agilent eight-plex platform and development of 

different microarray analysis methods.  

 

Reportable Outcomes: 
Presentations: 

Minisymposium Talk: 

Siolas, D., Chang K, Silva J, Rollins F, Powers S, Parker J, Hannon GJ. (2007) High throughput 

RNA interference barcode screens as a tool for discovering gene function. American 

Association for Cancer Research Conference Minisymposium Presentation, Los Angeles, 

California, USA 

 

Awards: 
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Siolas, D. (2007) AACR-WICR Brigid G. Leventhal Scholar Award in Cancer Research Award. 

American Association for Cancer Research, Philadelphia, PA, USA. 

 

Conclusions: 
Using our shRNA pool strategy, I performed a genome-wide RNAi in vitro screen in MDAMB231 

breast cancer cells seeking genes that modify sensitivity to the proteasome inhibitor, Velcade. This 

screen was conducted at two different dosages allowing us to detect genes that will enhance 

sensitivity or increase resistance to Velcade. My next step is to hybridize my tissue culture screen 

to a barcode microarray. I have been developing our microarray platform and analysis methods to 

allow us to detect viable candidates. These candidates will then be validated in vitro and in vivo. 
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